내비어-스톡스 방정식
내비어-스톡스 방정식
  • 김인수
  • 승인 2007.09.27 17:20
  • 댓글 0
이 기사를 공유합니다

밀레니엄 문제의 3번째 문제는 내비어-스톡스 방정식(Navier-Stokes Equation)이라는 것이다. 내비어-스톡스 방정식들은 배의 몸통 주위를 흐르는 물이나 비행기 날개 우이로 흐르는 공기 같은 유체와 기체의 흐름을 연구하는 이론이다. 그 방정식들은 수학자들이 말하는 이른바 편미분방정식의 일종이다. 과학이나 공학을 전공하는 대학생들은 의례적으로 편미분 방정식의 해법을 배운다. 내비어-스톡스 방정식들은 외관상 대학 미적분학 교과서에 나오는 편미분방정식 연습 문제와 다르지 않아 보인다. 그러나 외관은 기만일 수 있다. 오늘날까지 그 누구도 내비어-스톡스 방정식의 해의 공식을 찾을 단서조차 발견하지 못했고 그런 공식의 존재 여부조차 밝혀지지 않았다.


이런 실패에 아랑곳하지 않고 현장에서는 해양공학자들이 효율적인 배를 설계하고, 항공공학자들은 우수한 비행기를 설계한다. 내비어-스톡스 방정식을 푸는(2차방정식 해의 공식과 유사한) 일반 공식은 없지만, 컴퓨터를 이용하여 특정 형태의 방정식들에 대한 근사적인 해를 구하는 것은 가능하기 때문이다. 양-밀스 문제와 마찬가지로 내비어-스톡스 문제 역시 수학이 다른 분야를 따라잡을 것을 요구한다. 이 문제의 경우에는 공학자들이 이미 하고 있는 일을 수학이 따라잡아야 한다.


"따라잡는다"는 표현이 그릇된 인상을 줄지도 모르겠다. 뒤쳐지기 싫어하는 수학자들의 자존심이 관건이라는 인상 말이다. 그런 인상을 가진다면, 과학적 지식이 발전해고는 방식을 오해한 것이다. 수학은 본성상 추상적이기 때문에, 현상을 수학적으로 이해한다는 것은 일반적으로 가장 깊고 확실하게 이해한다는 것이다. 또한 무엇인가를 더 깊게 이해하면, 그것을 더 잘 이용할 수 있기 때문이다. 질량 간극 가설의 증명이 물리학에 획기적인 발전을 가져올 것과 마찬가지로, 내비어-스톡스 방정식 풀이는 해양 및 항공공학의 발전을 가져올 것이 분명하기 때문이다.


밀레니엄 문제의 4번째 문제는 리만 가설(Riemann Hypothesis)이다. 이 문제는 1900년 힐베르트가 제시한 23개의 문제들 중 미해결로 남아 있는 유일한 문제이다. 어떤 특정한 방정식의 가능한 해들과 관련된 이 기묘한 형태의 문제가 수학의 미해결 문제들 중 가장 중요한 문제라는 것에 전 세계 수학자 대부분이 동의한다.


이 문제는 1859년 독일 수학자 리만에 의해서 처음 제기되었다. 리만은 다음과 같은 오랜 수학적 질문에 대한 답을 추구하고 있었다. 소수들이 무엇인가 패턴을 가지고 있을까? 기원전 350년경 유명한 그리스 수학자 유클리드는 소수가 영원히 계속된다는 것을, 즉 무한히 많이 소수가 존재한다는 것을 증명했다. 더 나아가 실제로 소수를 나열해보면, 수가 커질수록 소수가 점점 '엷어져서' 드물게만 나타나는 듯이 보인다. 하지만 소수에 관해서 이 이상의 이야기를 할 수 있을까? 사실상 할 수 있다. 리만 가설이 증명된다면, 소수와 소수의 분포에 관한 우리의 지식이 발전할 것이다. 또한 그 증명은 수학자들의 호기심을 만족시키는 것 이상의 귀결을 가져올 것이다. 그 증명은 소수들의 패턴을 휠씬 넘어선 수학적 귀결들을 가질 뿐 아니라, 물리학과 현대 통신기술에도 응용될 것이다.


밀레니엄 문제의 5번째 문제는 호지 추측(Hodge Conjecture)이라는 문제이다. 이 문제는 어떻게 단순한 대상들로부터 복잡한 수학적 대상을 구성할 수 있는지와 관련된다. 이 문제는 아마도 밀레니엄 문제들 중에서 일반인이 이해하기가 가장 어려운 문제일 것이다. 기반에 있는 직관이 다른 문제들에 의해 덜 분명하거나, 다른 문제들보다 더 난해하기 때문이 아니다. 오히려 일반 사람들이 경험하게 될 어려움은 호지 추측이 특정한 종류의 추상적 대상들을 분류하기 위해서 수학자들이 사용하는 기법과 관련되기 때문에 발생한다. 호지 추측은 그 분류법의 심층에서 나오며 추상적 수준이 너무 높다. 그 추상 수준에 도달하는 유일한 길은 점점 높아지는 추상수학의 수준들을 거쳐 올라가는 길이다.


호지 추측을 향한 길은 20세기 전반기에 수학자들이 복잡한 대상들의 모양을 탐구하는 강력한 방법을 발견하면서 열렸다. 그 방법의 기반에 있는 발상은 주어진 대상의 모양을 단순한 기하학적 벽돌들을 짜 맞춤으로서 어느 정도까지 근사시킬 수 있는지를 묻는 것이었다. 그 방법은 매우 유용했고 여러 방식으로 일반화되었다. 수학자들은 그 방법들을 발전시켜 강력한 기법들을 만들어냈다, 결국 많은 다양한 종류의 대상들을 나열한 목록에 도달했다. 하지만, 불행하게도 이 기법들이 일반화 되는 과정에서 기하학적 근원이 흐려졌다, 수학자들은 기하학적 해석이 전혀 없는 대상들도 목록에 포함시켜야 했다. 호지 추측은 중요한 대상들의 집합(projective algebraic varieties)에 대해서는, 호지 회로라고 불리는 조각들이 기하학적 조각들(대수 회로)의 조합이라고 주장한다.

댓글삭제
삭제한 댓글은 다시 복구할 수 없습니다.
그래도 삭제하시겠습니까?
댓글 0
댓글쓰기
계정을 선택하시면 로그인·계정인증을 통해
댓글을 남기실 수 있습니다.